Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 847
Filtrar
1.
J Exp Clin Cancer Res ; 43(1): 133, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38698462

RESUMEN

BACKGROUND: Targeting ferroptosis has been identified as a promising approach for the development of cancer therapies. Monounsaturated fatty acid (MUFA) is a type of lipid that plays a crucial role in inhibiting ferroptosis. Ficolin 3 (FCN3) is a component of the complement system, serving as a recognition molecule against pathogens in the lectin pathway. Recent studies have reported that FCN3 demonstrates inhibitory effects on the progression of certain tumors. However, whether FCN3 can modulate lipid metabolism and ferroptosis remains largely unknown. METHODS: Cell viability, BODIPY-C11 staining, and MDA assay were carried out to detect ferroptosis. Primary hepatocellular carcinoma (HCC) and xenograft models were utilized to investigate the effect of FCN3 on the development of HCC in vivo. A metabonomic analysis was conducted to assess alterations in intracellular and HCC intrahepatic lipid levels. RESULTS: Our study elucidates a substantial decrease in the expression of FCN3, a component of the complement system, leads to MUFA accumulation in human HCC specimens and thereby significantly promotes ferroptosis resistance. Overexpression of FCN3 efficiently sensitizes HCC cells to ferroptosis, resulting in the inhibition of the oncogenesis and progression of both primary HCC and subcutaneous HCC xenograft. Mechanistically, FCN3 directly binds to the insulin receptor ß (IR-ß) and its pro-form (pro-IR), inhibiting pro-IR cleavage and IR-ß phosphorylation, ultimately resulting in IR-ß inactivation. This inactivation of IR-ß suppresses the expression of sterol regulatory element binding protein-1c (SREBP1c), which subsequently suppresses the transcription of genes related to de novo lipogenesis (DNL) and lipid desaturation, and consequently downregulates intracellular MUFA levels. CONCLUSIONS: These findings uncover a novel regulatory mechanism by which FCN3 enhances the sensitivity of HCC cells to ferroptosis, indicating that targeting FCN3-induced ferroptosis is a promising strategy for HCC treatment.


Asunto(s)
Carcinoma Hepatocelular , Ferroptosis , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/genética , Ratones , Animales , Ácidos Grasos Monoinsaturados/metabolismo , Ácidos Grasos Monoinsaturados/farmacología , Regulación hacia Abajo , Masculino , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Línea Celular Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto , Femenino , Modelos Animales de Enfermedad
2.
Molecules ; 29(9)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38731499

RESUMEN

Carbon nanodots (CDs) are commonly found in food products and have attracted significant attention from food scientists. There is a high probability of CD exposure in humans, but its impacts on health are unclear. Therefore, health effects associated with CD consumption should be investigated. In this study, we attempted to create a model system of the Maillard reaction between cystine and glucose using a simple cooking approach. The CDs (CG-CDs) were isolated from cystine-glucose-based Maillard reaction products and characterized using fluorescence spectroscopy, X-ray diffractometer (XRD), and transmission electron microscope (TEM). Furthermore, human mesenchymal stem cells (hMCs) were used as a model to unravel the CDs' cytotoxic properties. The physiochemical assessment revealed that CG-CDs emit excitation-dependent fluorescence and possess a circular shape with sizes ranging from 2 to 13 nm. CG-CDs are predominantly composed of carbon, oxygen, and sulfur. The results of the cytotoxicity evaluation indicate good biocompatibility, where no severe toxicity was observed in hMCs up to 400 µg/mL. The DPPH assay demonstrated that CDs exert potent antioxidant abilities. The qPCR analysis revealed that CDs promote the downregulation of the key regulatory genes, PPARγ, C/EBPα, SREBP-1, and HMGCR, coupled with the upregulation of anti-inflammatory genes. Our findings suggested that, along with their excellent biocompatibility, CG-CDs may offer positive health outcomes by modulating critical genes involved in lipogenesis, homeostasis, and obesity pathogenesis.


Asunto(s)
Proteína alfa Potenciadora de Unión a CCAAT , Carbono , Reacción de Maillard , Células Madre Mesenquimatosas , PPAR gamma , Proteína 1 de Unión a los Elementos Reguladores de Esteroles , Humanos , Carbono/química , PPAR gamma/genética , PPAR gamma/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/efectos de los fármacos , Proteína alfa Potenciadora de Unión a CCAAT/metabolismo , Proteína alfa Potenciadora de Unión a CCAAT/genética , Puntos Cuánticos/química , Regulación hacia Abajo/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Antioxidantes/farmacología , Antioxidantes/química , Azufre/química
3.
Cell Signal ; 119: 111183, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38636768

RESUMEN

Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related mortality worldwide, with Hepatitis B virus (HBV) infection being the leading cause. This study aims to investigate the role of HBV in HCC pathogenesis involving glucose metabolism. Long non-coding RNA (lncRNA) OIP5-AS1 was significantly downregulated in HBV-positive HCC patients, and its low expression indicated a poor prognosis. This lncRNA was primarily localized in the cytoplasm, acting as a tumor suppressor. HBV protein X (HBx) repressed OIP5-AS1 expression by inhibiting a ligand-activated transcriptional factor peroxisome proliferator-activated receptor α (PPARα). Furthermore, mechanistic studies revealed that OIP5-AS1 inhibited tumor growth by suppressing Hexokinase domain component 1 (HKDC1)-mediated glycolysis. The expression of HKDC1 could be enhanced by transcriptional factor sterol regulatory element-binding protein 1 (SREBP1). OIP5-AS1 facilitated the ubiquitination and degradation of SREBP1 to suppress HKDC1 transcription, which inhibited glycolysis. The results suggest that lncRNA OIP5-AS1 plays an anti-oncogenic role in HBV-positive HCC via the HBx/OIP5-AS1/HKDC1 axis, providing a promising diagnostic marker and therapeutic target for HBV-positive HCC patients.


Asunto(s)
Carcinoma Hepatocelular , Regulación Neoplásica de la Expresión Génica , Glucólisis , Hexoquinasa , Neoplasias Hepáticas , ARN Largo no Codificante , Transactivadores , Proteínas Reguladoras y Accesorias Virales , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Humanos , Carcinoma Hepatocelular/virología , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/virología , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Glucólisis/genética , Transactivadores/metabolismo , Transactivadores/genética , Hexoquinasa/metabolismo , Hexoquinasa/genética , Animales , Virus de la Hepatitis B , Masculino , Línea Celular Tumoral , Regulación hacia Abajo , Ratones , Ratones Desnudos , Femenino , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Ratones Endogámicos BALB C , PPAR alfa/metabolismo , PPAR alfa/genética
4.
J Agric Food Chem ; 72(18): 10391-10405, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38669300

RESUMEN

Metabolic-associated fatty liver disease (MAFLD) is witnessing a global surge; however, it still lacks effective pharmacological interventions. Fucoxanthin, a natural bioactive metabolite derived from marine brown algae, exhibits promising pharmacological functions, particularly in ameliorating metabolic disorders. However, the mechanisms underlying its therapeutic efficacy in addressing MAFLD remain elusive. Our present findings indicated that fucoxanthin significantly alleviated palmitic acid (PA)-induced hepatic lipid deposition in vitro and obesity-induced hepatic steatosis in ob/ob mice. Moreover, at both the protein and transcriptional levels, fucoxanthin effectively increased the expression of PPARα and CPT1 (involved in fatty acid oxidation) and suppressed FASN and SREBP1c (associated with lipogenesis) in both PA-induced HepG2 cells and hepatic tissues in ob/ob mice. This modulation was accompanied by the activation of AMPK. The capacity of fucoxanthin to improve hepatic lipid deposition was significantly attenuated when utilizing the AMPK inhibitor or siRNA-mediated AMPK silencing. Mechanistically, fucoxanthin activates AMPK, subsequently regulating the KEAP1/Nrf2/ARE signaling pathway to exert antioxidative effects and stimulating the PGC1α/NRF1 axis to enhance mitochondrial biogenesis. These collective actions contribute to fucoxanthin's amelioration of hepatic steatosis induced by metabolic perturbations. These findings offer valuable insights into the prospective utilization of fucoxanthin as a therapeutic strategy for managing MAFLD.


Asunto(s)
Hígado , Ratones Endogámicos C57BL , Xantófilas , Xantófilas/farmacología , Animales , Humanos , Ratones , Masculino , Hígado/metabolismo , Hígado/efectos de los fármacos , Células Hep G2 , Metabolismo de los Lípidos/efectos de los fármacos , PPAR alfa/metabolismo , PPAR alfa/genética , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Proteínas Quinasas Activadas por AMP/genética , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Hígado Graso/metabolismo , Hígado Graso/tratamiento farmacológico , Hígado Graso/genética , Obesidad/metabolismo , Obesidad/tratamiento farmacológico , Obesidad/genética , Lipogénesis/efectos de los fármacos , Ratones Obesos
5.
Exp Mol Med ; 56(4): 1001-1012, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38622198

RESUMEN

Sterol regulatory element-binding protein (SREBP)-1c is involved in cellular lipid homeostasis and cholesterol biosynthesis and is highly increased in nonalcoholic steatohepatitis (NASH). However, the molecular mechanism by which SREBP-1c regulates hepatic stellate cells (HSCs) activation in NASH animal models and patients have not been fully elucidated. In this study, we examined the role of SREBP-1c in NASH and the regulation of LCN2 gene expression. Wild-type and SREBP-1c knockout (1cKO) mice were fed a high-fat/high-sucrose diet, treated with carbon tetrachloride (CCl4), and subjected to lipocalin-2 (LCN2) overexpression. The role of LCN2 in NASH progression was assessed using mouse primary hepatocytes, Kupffer cells, and HSCs. LCN2 expression was examined in samples from normal patients and those with NASH. LCN2 gene expression and secretion increased in CCl4-induced liver fibrosis mice model, and SREBP-1c regulated LCN2 gene transcription. Moreover, treatment with holo-LCN2 stimulated intracellular iron accumulation and fibrosis-related gene expression in mouse primary HSCs, but these effects were not observed in 1cKO HSCs, indicating that SREBP-1c-induced LCN2 expression and secretion could stimulate HSCs activation through iron accumulation. Furthermore, LCN2 expression was strongly correlated with inflammation and fibrosis in patients with NASH. Our findings indicate that SREBP-1c regulates Lcn2 gene expression, contributing to diet-induced NASH. Reduced Lcn2 expression in 1cKO mice protects against NASH development. Therefore, the activation of Lcn2 by SREBP-1c establishes a new connection between iron and lipid metabolism, affecting inflammation and HSCs activation. These findings may lead to new therapeutic strategies for NASH.


Asunto(s)
Hierro , Lipocalina 2 , Cirrosis Hepática , Ratones Noqueados , Enfermedad del Hígado Graso no Alcohólico , Proteína 1 de Unión a los Elementos Reguladores de Esteroles , Animales , Humanos , Masculino , Ratones , Tetracloruro de Carbono/farmacología , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Células Estrelladas Hepáticas/metabolismo , Células Estrelladas Hepáticas/patología , Hepatocitos/metabolismo , Hepatocitos/patología , Hierro/metabolismo , Lipocalina 2/metabolismo , Lipocalina 2/genética , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Cirrosis Hepática/etiología , Cirrosis Hepática/genética , Cirrosis Hepática/inducido químicamente , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/patología , Enfermedad del Hígado Graso no Alcohólico/genética , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética
6.
Transl Res ; 268: 51-62, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38244769

RESUMEN

Due to soared obesity population worldwide, hepatosteatosis is becoming a major risk factor for hepatocellular carcinoma (HCC). Undertaken molecular events during the progression of steatosis to liver cancer are thus under intensive investigation. In this study, we demonstrated that high-fat diet potentiated mouse liver AKT2. Hepatic AKT2 hyperactivation through gain-of-function mutation of Akt2 (Akt2E17K) caused spontaneous hepatosteatosis, injury, inflammation, fibrosis, and eventually HCC in mice. AKT2 activation also exacerbated lipopolysaccharide and D-galactosamine hydrochloride-induced injury/inflammation and N-Nitrosodiethylamine (DEN)-induced HCC. A positive correlation between AKT2 activity and SCD1 expression was observed in human HCC samples. Activated AKT2 enhanced the production of monounsaturated fatty acid which was dependent on SREBP1 upregulation of SCD1. Blockage of active SREBP1 and ablation of SCD1 reduced steatosis, inflammation, and tumor burden in DEN-treated Akt2E17K mice. Therefore, AKT2 activation is crucial for the development of steatosis-associated HCC which can be treated with blockage of AKT2-SREBP1-SCD1 signaling cascade.


Asunto(s)
Metabolismo de los Lípidos , Neoplasias Hepáticas , Proteínas Proto-Oncogénicas c-akt , Estearoil-CoA Desaturasa , Proteína 1 de Unión a los Elementos Reguladores de Esteroles , Animales , Humanos , Masculino , Ratones , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/genética , Dieta Alta en Grasa/efectos adversos , Hígado Graso/metabolismo , Hígado Graso/patología , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Ratones Endogámicos C57BL , Proteínas Proto-Oncogénicas c-akt/metabolismo , Estearoil-CoA Desaturasa/metabolismo , Estearoil-CoA Desaturasa/genética , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética
7.
Int J Mol Sci ; 25(2)2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38256181

RESUMEN

The prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD) is rapidly increasing worldwide at an alarming pace, due to an increase in obesity, sedentary and unhealthy lifestyles, and unbalanced dietary habits. MASLD is a unique, multi-factorial condition with several phases of progression including steatosis, steatohepatitis, fibrosis, cirrhosis, and hepatocellular carcinoma. Sterol element binding protein 1c (SREBP1c) is the main transcription factor involved in regulating hepatic de novo lipogenesis. This transcription factor is synthesized as an inactive precursor, and its proteolytic maturation is initiated in the membrane of the endoplasmic reticulum upon stimulation by insulin. SREBP cleavage activating protein (SCAP) is required as a chaperon protein to escort SREBP from the endoplasmic reticulum and to facilitate the proteolytic release of the N-terminal domain of SREBP into the Golgi. SCAP inhibition prevents activation of SREBP and inhibits the expression of genes involved in triglyceride and fatty acid synthesis, resulting in the inhibition of de novo lipogenesis. In line, previous studies have shown that SCAP inhibition can resolve hepatic steatosis in animal models and intensive research is going on to understand the effects of SCAP in the pathogenesis of human disease. This review focuses on the versatile roles of SCAP/SREBP regulation in de novo lipogenesis and the structure and molecular features of SCAP/SREBP in the progression of hepatic steatosis. In addition, recent studies that attempt to target the SCAP/SREBP axis as a therapeutic option to interfere with MASLD are discussed.


Asunto(s)
Hígado Graso , Péptidos y Proteínas de Señalización Intracelular , Neoplasias Hepáticas , Proteínas de la Membrana , Proteína 1 de Unión a los Elementos Reguladores de Esteroles , Animales , Humanos , Metabolismo de los Lípidos , Lipogénesis , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas de la Membrana/genética
8.
J Biol Chem ; 300(2): 105655, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38237682

RESUMEN

Endoplasmic reticulum stress is associated with insulin resistance and the development of nonalcoholic fatty liver disease. Deficiency of the endoplasmic reticulum stress response T-cell death-associated gene 51 (TDAG51) (TDAG51-/-) in mice promotes the development of high-fat diet (HFD)-induced obesity, fatty liver, and hepatic insulin resistance. However, whether this effect is due specifically to hepatic TDAG51 deficiency is unknown. Here, we report that hepatic TDAG51 protein levels are consistently reduced in multiple mouse models of liver steatosis and injury as well as in liver biopsies from patients with liver disease compared to normal controls. Delivery of a liver-specific adeno-associated virus (AAV) increased hepatic expression of a TDAG51-GFP fusion protein in WT, TDAG51-/-, and leptin-deficient (ob/ob) mice. Restoration of hepatic TDAG51 protein was sufficient to increase insulin sensitivity while reducing body weight and fatty liver in HFD fed TDAG51-/- mice and in ob/ob mice. TDAG51-/- mice expressing ectopic TDAG51 display improved Akt (Ser473) phosphorylation, post-insulin stimulation. HFD-fed TDAG51-/- mice treated with AAV-TDAG51-GFP displayed reduced lipogenic gene expression, increased beta-oxidation and lowered hepatic and serum triglycerides, findings consistent with reduced liver weight. Further, AAV-TDAG51-GFP-treated TDAG51-/- mice exhibited reduced hepatic precursor and cleaved sterol regulatory-element binding proteins (SREBP-1 and SREBP-2). In vitro studies confirmed the lipid-lowering effect of TDAG51 overexpression in oleic acid-treated Huh7 cells. These studies suggest that maintaining hepatic TDAG51 protein levels represents a viable therapeutic approach for the treatment of obesity and insulin resistance associated with nonalcoholic fatty liver disease.


Asunto(s)
Resistencia a la Insulina , Enfermedad del Hígado Graso no Alcohólico , Animales , Humanos , Ratones , Muerte Celular , Dieta Alta en Grasa/efectos adversos , Hepatocitos/metabolismo , Resistencia a la Insulina/fisiología , Hígado/metabolismo , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Obesidad/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Linfocitos T/metabolismo , Masculino
9.
Cell Biochem Funct ; 42(1): e3918, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38269516

RESUMEN

Several cellular processes, including the recovery of misfolded proteins, the folding of polypeptide chains, transit of polypeptides across the membrane, construction and disassembly of protein complexes, and modulation of protein control, are carried out by DnaJ homolog subfamily A member 1 (DNAJA1), which belongs to the DnaJ heat-shock protein family. It is unknown if DNAJA1 regulates the production of milk in bovine mammary epithelium cells (BMECs). Methionine and leucine increased DNAJA1 expression and nuclear location, as seen by us. In contrast to DNAJA1 knockdown, overexpression of DNAJA1 boosted the production of milk proteins and fats as well as mammalian target of rapamycin (mTOR) and sterol regulatory element binding protein-1c (SREBP-1c). As a result of amino acids, mTOR and SREBP-1c gene expression are stimulated, and DNAJA1 is a positive regulator of BMECs' amino acid-induced controlled milk protein and fat production.


Asunto(s)
Células Epiteliales , Proteínas de la Leche , Animales , Bovinos , Aminoácidos , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Serina-Treonina Quinasas TOR
10.
Chem Biol Interact ; 389: 110865, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38191086

RESUMEN

Non-alcoholic Fatty Liver Disease (NAFLD) is one of the common side effects of tamoxifen treatment for estrogen receptor-positive breast cancer, and is representative of disorders of energy metabolism. Fatty liver is induced after tamoxifen (TAM) inhibition of estrogen receptor activity, but the exact mechanism is not clear. This study investigated the effects and mechanisms of TAM-induced steatosis in the liver. The effects and mechanisms of TAM on hepatocyte lipid metabolism were assessed using C57BL/6 female mice and human hepatoma cells. TAM promoted fat accumulation in the liver by upregulation of Srebp-1c expression. Regarding the molecular mechanism, TAM promoted the recruitment of the auxiliary transcriptional activator, p300, and dissociated the auxiliary transcriptional repressor, nuclear receptor corepressor (NCOR), of the complexes, which led to enhancement of Srebp-1c transcription and an increase of triglyceride (TG) synthesis. Vitamin D (VD), a common fat-soluble vitamin, can decrease TAM-induced NAFLD by promoting p300 dissociation and NCOR recruitment. Tamoxifen promoted the recruitment and dissociation of co-transcription factors on the LXR/ER/RXR receptor complex, leading to a disorder of liver lipid metabolism. VD interfered with TAM-induced liver lipid metabolism disorders by reversing this process.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Ratones , Animales , Femenino , Humanos , Enfermedad del Hígado Graso no Alcohólico/inducido químicamente , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Receptores X del Hígado/metabolismo , Tamoxifeno/farmacología , Vitamina D/farmacología , Receptores de Estrógenos/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Ratones Endogámicos C57BL , Hígado/metabolismo , Vitaminas/metabolismo , Vitaminas/farmacología
11.
Adv Sci (Weinh) ; 11(7): e2306298, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38064101

RESUMEN

Pancreatic cancer (PCa) is one of the most fatal human malignancies. The enhanced infiltration of stromal tissue into the PCa tumor microenvironment limits the identification of key tumor-specific transcription factors and epigenomic abnormalities in malignant epithelial cells. Integrated transcriptome and epigenetic multiomics analyses of the paired PCa organoids indicate that the basic helix-loop-helix transcription factor 40 (BHLHE40) is significantly upregulated in tumor samples. Increased chromatin accessibility at the promoter region and enhanced mTOR pathway activity contribute to the elevated expression of BHLHE40. Integrated analysis of chromatin immunoprecipitation-seq, RNA-seq, and high-throughput chromosome conformation capture data, together with chromosome conformation capture assays, indicate that BHLHE40 not only regulates sterol regulatory element-binding factor 1 (SREBF1) transcription as a classic transcription factor but also links the enhancer and promoter regions of SREBF1. It is found that the BHLHE40-SREBF1-stearoyl-CoA desaturase axis protects PCa cells from ferroptosis, resulting in the reduced accumulation of lipid peroxidation. Moreover, fatostatin, an SREBF1 inhibitor, significantly suppresses the growth of PCa tumors with high expressions of BHLHE40. This study highlights the important roles of BHLHE40-mediated lipid peroxidation in inducing ferroptosis in PCa cells and provides a novel mechanism underlying SREBF1 overexpression in PCa.


Asunto(s)
Ferroptosis , Neoplasias Pancreáticas , Humanos , Proteínas de Homeodominio/genética , Ferroptosis/genética , Factores de Transcripción/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Neoplasias Pancreáticas/genética , Microambiente Tumoral , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo
12.
Horm Metab Res ; 56(2): 159-166, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37992721

RESUMEN

Nonalcoholic fatty liver disease and diabetes always coexist. The relationship of fatty liver and hyperglycemia is not clear. We studied the influence of hyperglycemia on triglyceride (TG) accumulation in the liver and explored its possible mechanisms. SD rats were divided into three groups: Group A (sham operation control), Group B (partially pancreatectomized rats), and Group C (partially pancreatectomized rats treated with insulin). At 4 weeks after surgery, pancreatic weights and liver TG contents were measured. Serum biochemical parameters were determined, and oral glucose tolerance tests (OGTT) were performed. The gene expression of sterol regulatory element-binding protein1c (SREBP-1c), carbohydrate regulatory element-binding protein (ChREBP), fatty acid synthase(FAS), carnitine palmitoyltransferase 1 (CPT-1), and fibroblast growth factor 21 (FGF21) was determined by real-time PCR. Compared with Group A, postprandial glucose increased significantly; the concentrations of insulin and C-peptides, pancreatic weights and serum FGF21 levels were decreased, liver TG was increased significantly in Group B, and insulin treatment improved these changes. Compared with Group A, the gene expressions of FGF21, CPT-1 and FAS in the liver were decreased in Group B (all p<0.05). Compared with Group B, the gene expressions of FGF21, FAS, ChREBP, SREBP-1c and CPT-1 in the liver in Group C were all increased significantly (p<0.05, respectively). Hyperglycemia induced by partial pancreatectomy could lead to increased liver TG. Insulin treatment could decrease glucose levels and improve fatty liver, and genes related to lipid metabolism may play a role in this process.


Asunto(s)
Hiperglucemia , Enfermedad del Hígado Graso no Alcohólico , Ratas , Animales , Triglicéridos/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Ratas Sprague-Dawley , Hígado/metabolismo , Enfermedad del Hígado Graso no Alcohólico/genética , Metabolismo de los Lípidos/genética , Insulina/metabolismo , Glucosa/metabolismo
13.
Mol Med Rep ; 29(2)2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38131179

RESUMEN

Drynaria rhizome is a herbal medicine used for strengthening bones and treating bone diseases in East Asia. Although obesity is considered to benefit bone formation, it has been revealed that visceral fat accumulation can promote osteoporosis. Given the complex relationship between bone metabolism and obesity, bone­strengthening medicines should be evaluated while considering the effects of obesity. The present study investigated the effects of Drynaria rhizome extract (DRE) on high­fat diet (HFD)­induced obese mice. DRE was supplemented with the HFD. Body weight, food intake, the expression levels of lipogenesis transcription factors, including sterol regulatory element binding protein (SREBP)­1, peroxisome proliferator­activated receptor (PPAR)­Î³ and adenosine monophosphate­activated protein kinase (AMPK)­α, and AMPK activation were evaluated. Mice fed DRE and a HFD exhibited reduced body weight without differences in food intake compared with those in the HFD group. Furthermore, DRE; upregulated AMPK­α of epididymal one; down­regulated SREBP­1 and PPAR­Î³, as determined using western blotting and quantitative polymerase chain reaction, respectively. Decreased lipid accumulation were observed in both fat pad and liver of HFD­fed mice, which were suppressed by DRE treatment. These results demonstrated the potential of DRE as a dietary natural product for strengthening bones and managing obesity.


Asunto(s)
Fármacos Antiobesidad , Dieta Alta en Grasa , Ratones , Animales , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Dieta Alta en Grasa/efectos adversos , Proteínas Quinasas Activadas por AMP/metabolismo , Receptores Activados del Proliferador del Peroxisoma , Rizoma , Extractos Vegetales/farmacología , Obesidad/tratamiento farmacológico , Obesidad/etiología , Obesidad/metabolismo , Peso Corporal , Ratones Endogámicos C57BL , Fármacos Antiobesidad/farmacología , Ratones Obesos
14.
Breast Cancer Res ; 25(1): 151, 2023 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-38082285

RESUMEN

Triple-negative breast cancer (TNBC) represents the most challenging subtype of breast cancer. Studies have implicated an upregulation of lipid synthesis pathways in the initiation and progression of TNBC. Targeting lipid synthesis pathways may be a promising therapeutic strategy for TNBC. Our previous study developed a therapeutic protein PAK with passive targeting and inhibiting tumor proliferation. In this study, we further substantiate the efficacy of PAK in TNBC. Transcriptome sequencing analysis revealed PAK-mediated downregulation of genes involved in fatty acid synthesis, including key genes like SREBP-1, FASN, and SCD1. RNA immunoprecipitation experiments demonstrated a significant binding affinity of PAK to SREBP-1 mRNA, facilitating its degradation process. Both in vitro and in vivo models, PAK hampered TNBC progression by downregulating lipid synthesis pathways. In conclusion, this study emphasizes that PAK inhibits the progression of TNBC by binding to and degrading SREBP-1 mRNA, revealing a new strategy for regulating lipid synthesis in the intervention of TNBC and its therapeutic significance.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/patología , ARN Mensajero/genética , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Línea Celular Tumoral , Lípidos , Proliferación Celular/genética
15.
Anim Sci J ; 94(1): e13886, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37963598

RESUMEN

This study aimed to investigate the metabolic effects of propylene glycol (PG) over 60, 90, and 120 days in lambs. Seventy-two weaned male lambs were allocated into three groups: control (Con), PG1.5 (1.5 mL/kg live weight0.75 ), and PG3 (3 mL/kg live weight0.75 ). Blood samples were collected at the beginning and slaughter days. Biochemical parameters (glucose, triglycerides, ALT, AST, LDH, BUN, and insulin) and gene and protein levels of peroxisome proliferator activated receptor gamma (PPARγ), diacylglycerol o-acyltransferase 1 (DGAT1), carbohydrate responsive element binding protein (ChREBP), and sterol regulatory element binding transcription factor 1c (SREBP-1c) in the liver were determined. Glucose in PG1.5 was increased on Day 60, while significant differences were observed in biochemical parameters except for insulin on the 60, 90, and 120 days. Biochemical parameters such as ALT, AST, LDH, and BUN increased over time, while triglycerides decreased. DGAT1 gene and protein levels were lower, while SREBP-1c and PPARγ were higher in PG groups on Day 60. While SREBP-1c was lower in PG1.5, ChREBP was higher in PG3 on Day 90. PPARγ, DGAT1, and ChREBP were upregulated in PG3 on Day 120. Positive correlations were found between proteins. The long-term use of PG in lambs did not have detrimental effects on metabolism. The study provides valuable insights into the molecular mechanisms underlying the metabolic effects of PG in lambs, shedding light on its potential applications in lamb production.


Asunto(s)
Hígado , PPAR gamma , Ovinos , Animales , Masculino , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , PPAR gamma/genética , PPAR gamma/metabolismo , Hígado/metabolismo , Glucosa/metabolismo , Insulina/metabolismo , Triglicéridos , Glicoles de Propileno/metabolismo , Glicoles de Propileno/farmacología
16.
Nat Commun ; 14(1): 6370, 2023 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-37828054

RESUMEN

Palmitic acid (PA) is the most common fatty acid in humans and mediates palmitoylation through its conversion into palmitoyl coenzyme A. Although palmitoylation affects many proteins, its pathophysiological functions are only partially understood. Here we demonstrate that PA acts as a molecular checkpoint of lipid reprogramming in HepG2 and Hep3B cells. The zinc finger DHHC-type palmitoyltransferase 23 (ZDHHC23) mediates the palmitoylation of plant homeodomain finger protein 2 (PHF2), subsequently enhancing ubiquitin-dependent degradation of PHF2. This study also reveals that PHF2 functions as a tumor suppressor by acting as an E3 ubiquitin ligase of sterol regulatory element-binding protein 1c (SREBP1c), a master transcription factor of lipogenesis. PHF2 directly destabilizes SREBP1c and reduces SREBP1c-dependent lipogenesis. Notably, SREBP1c increases free fatty acids in hepatocellular carcinoma (HCC) cells, and the consequent PA induction triggers the PHF2/SREBP1c axis. Since PA seems central to activating this axis, we suggest that levels of dietary PA should be carefully monitored in patients with HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/metabolismo , Metabolismo de los Lípidos/fisiología , Lipoilación , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Neoplasias Hepáticas/metabolismo , Ubiquitinación , Proteínas de Homeodominio/metabolismo
17.
Anticancer Res ; 43(10): 4435-4446, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37772593

RESUMEN

BACKGROUND/AIM: MicroRNAs (miRNAs) interact with mRNAs and play important roles in progression and prognosis in multiple cancers. Sterol regulatory element-binding protein 1 (SREBP1) is an important lipid metabolism regulatory gene. The aim of the present study was to analyze the profiles of miRNAs that are associated with SREBP1 expression in differentiated thyroid carcinoma (DTC). MATERIALS AND METHODS: In the present study, a high-throughput small RNA sequencing (miRNA-Seq) method was used to investigate differences in miRNA profiling with versus without interference with SREBP1 expression via small interfering RNA. Real-time qPCR (qRT-PCR) was performed to confirm the results. RESULTS: A total of 1,393 conserved and 84 novel miRNAs were successfully discovered. In two separate batches, a total of 27 differentially expressed miRNAs (11 up-regulated and 16 down-regulated) were observed in BCPAP cells after SREBF1 interference with two distinct siRNA fragments, as compared to the control siRNA treatment. Hsa-miR-941, hsa-miR-27a-5p, hsa-miR-29a-3p, hsa-miR-100-5p, and hsa-miR-21-3p were selected for validation using qRT-PCR. The qRT-PCR results were consistent with the sequencing data. Gene Ontology enrichment showed that the predicted targets of these miRNAs were mainly involved in the regulation of system development, metabolism and protein binding cellular processes, and metabolic processes. Kyoto Encyclopedia of Genes and Genomes pathways analysis showed that the predicted target genes were involved in several signaling pathways, including the Ras, MAPK, insulin, thyroid hormone, and metabolic pathway signaling pathways. CONCLUSION: Differentially expressed miRNAs and their target genes may play an important role in the progression and prognosis of DTC that is associated with SREBP1 expression.


Asunto(s)
MicroARNs , Neoplasias de la Tiroides , Humanos , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , MicroARNs/genética , MicroARNs/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , ARN Interferente Pequeño , Neoplasias de la Tiroides/genética , Perfilación de la Expresión Génica/métodos
18.
Cornea ; 42(12): 1586-1589, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37699567

RESUMEN

PURPOSE: This study aims to present ophthalmic manifestations of 2 infants with hereditary mucoepithelial dysplasia (HMD) related to SREBF1 mutation over a 5-year period. METHODS: Two female infants with an unremarkable perinatal history were evaluated for photophobia that had been manifest since 3 months after birth and diffuse scalp alopecia. Complete ocular examinations under anesthesia were performed, as well as genetic and systemic workup. RESULTS: Both patients had vascularizing keratitis in both eyes, characterized by the growth of corneal new vessels from the 360 degrees periphery to the center and the formation of stromal leucomatous opacity at the leading edge. The keratitis partially regressed in response to topical corticosteroids and waxed and waned during the 5 years of follow-up. In addition, the loss of scalp hair developed in a cyclical pattern, causing diffuse scalp alopecia in the patients. Rheumatologic, nutritional, and developmental evaluations were within normal ranges. Whole-exome sequencing identified a heterozygous c.1669C>T (p.Arg557Cys) pathogenic variant in the SREBF1 gene associated with HMD in both patients. CONCLUSIONS: In pediatric patients with recurrent vascularizing keratitis and diffuse scalp alopecia starting early in life, HMD should be considered, and genetic tests and collaboration with dermatologists and pediatricians on the diagnosis should be provided.


Asunto(s)
Alopecia Areata , Queratitis , Anomalías Cutáneas , Humanos , Lactante , Femenino , Niño , Alopecia/genética , Mutación , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética
19.
Biochem Pharmacol ; 216: 115768, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37652106

RESUMEN

Nonalcoholic fatty liver disease (NAFLD) has been linked to fat accumulation in the liver and lipid metabolism imbalance. Sesamin, a lignan commonly found in sesame seed oil, possesses antioxidant, anti-inflammatory, and anticancer properties. However, the precise mechanisms by which sesamin prevents hepatic steatosis are not well understood. This study aimed to explore the molecular mechanisms by which sesamin may improve lipid metabolism dysregulation. A in vitro hepatic steatosis model was established by exposing HepG2 cells to palmitate sodium. The results showed that sesamin effectively mitigated lipotoxicity and reduced reactive oxygen species production. Additionally, sesamin suppressed lipid accumulation by regulating key factors involved in lipogenesis and lipolysis, such as fatty acid synthase (FASN), sterol regulatory element-binding protein 1c (SREBP-1c), forkhead box protein O-1, and adipose triglyceride lipase. Molecular docking results indicated that sesamin could bind to estrogen receptor α (ERα) and reduce FASN and SREBP-1c expression via the Ca2+/calmodulin-dependent protein kinase kinase ß (CaMKKß)/AMP-activated protein kinase (AMPK) signaling pathway. Sesamin attenuated palmitate-induced lipotoxicity and regulated hepatic lipid metabolism in HepG2 cells by activating the ERα/CaMKKß/AMPK signaling pathway. These findings suggest that sesamin can improve lipid metabolism disorders and is a promising candidate for treating hepatic steatosis.


Asunto(s)
Lignanos , Enfermedad del Hígado Graso no Alcohólico , Humanos , Receptor alfa de Estrógeno/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina , Simulación del Acoplamiento Molecular , Hígado/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Lignanos/farmacología , Metabolismo de los Lípidos , Células Hep G2 , Transducción de Señal , Palmitatos/metabolismo
20.
Eur J Pharm Sci ; 187: 106483, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37268093

RESUMEN

Excessive sebum is the major factor involved in the pathophysiology of seborrheic diseases. Chemical medicines can result in mild to severe side effects. Polypeptides with much less side effects make them ideal for reducing sebum synthesis. Sterol regulatory element-binding proteins-1 (SREBP-1) is necessary for the biosynthesis of sterols. A SREBP-1-inhibiting polypeptide (SREi), which competitively inhibits the ubiquitination of Insig-1 so as to suppress the activation of SREBP-1 was selected as an active ingredient and formulated into skin topical preparations. The SREi anionic deformable liposomes contained sodium deoxycholate (SDCh) at the concentration of 4.4 mg/mL (SREi-ADL3) and SREi-ADL3 in 0.3% (w/v) carbomer hydrogel (SREi-ADL3-GEL) were prepared and characterized. The SREi-ADL3 presented a high entrapment efficiency of 92.62 ± 6.32%, a particle size of 99.54 ± 7.56 nm and a surface charge of -19.18 ± 0.45 mV. SREi-ADL3-GEL exhibited a sustained release behavior, a higher stability, a much more cellular uptake ability and transdermal absorption. In vivo golden hamster model confirmed that SREi-ADL3-GEL presented the strongest inhibitory effect on sebaceous gland growth and sebum synthesis by down-regulating the mRNA and protein expression of SREBP-1, fatty acid synthase (FAS) and acetyl-coenzyme A carboxylase 1 (ACC1). As confirmed by histological analysis, only a small amount of sebaceous gland lobes with the lightest staining intensity and the smallest dyeing area could be observed in the SREi-ADL3-GEL group. Taken together, SREi-ADL3-GEL displayed potential applications in sebum excessive production related diseases.


Asunto(s)
Proteínas Potenciadoras de Unión a CCAAT , Sebo , Cricetinae , Animales , Mesocricetus , Sebo/metabolismo , Proteínas Potenciadoras de Unión a CCAAT/genética , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Liposomas , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Hidrogeles , Péptidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA